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Abstract
We introduce an approach that adds attributes, like night train or on-board restaurant, as

search criteria to a time table information system. It is possible to specify temporal requirements
like when or for how long the attribute may occur. The challenge is to find optimal journeys
that maximize the duration of an occurring attribute while fulfilling all temporal requirements
and still minimizing the other search criteria travel time, number of transfers and price. Our
approach overcomes those problems by changing mainly the domination criteria of the used
Pareto Dijkstra multi criteria search. Early elimination of potential journeys that do not fulfil
the requirements lead to the result that in most of the cases the search time increase is merely
measurable. Even a challenge like night train search where big distances can lead to many
possible journeys requires in average only 8% more search time. For bike transportation the
search time can even be reduced.

Zusammenfassung
Wir stellen einen Ansatz vor, der es ermöglicht Attribute, wie Nachtzug oder Boardrestau-

rant, als Suchkriterien einem Fahrplanauskunftssystem hinzuzufügen. Weiterhin ist es möglich
zeitliche Abhängigkeiten zu spezifizieren, wie wann oder wie lange das Attribut verfügbar sein
soll. Hierbei ist die Herausforderung optimale Verbindungen zu finden, die die Dauer eines At-
tributes maximieren und gleichzeitig alle zeitlichen Abhängigkeiten erfüllen. Zusätzlich müssen
die drei anderen Suchkriterien Reisezeit, Anzahl an Umstiegen und der Preis minimiert werden.
Unser Ansatz löst diese Probleme, indem vor allem die Dominanzkriterien der verwendeten
Pareto Dijkstra Suche angepasst werden. Die Suchzeit erhöht sich hierbei nur geringfügig, da
Verbindungen, die die gestellten Anforderungen nicht erfüllen, frühzeitig Ausgeschlossen wer-
den können. So ist bei der Nachtzugsuche eine Druchschnittlicher Anstieg der Suchzeit von 8%
zu messen. Bei der Fahrradmitnahme wird die Suchzeit sogar reduziert.
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1 Introduction

Many trains provide special services for customers, if it is something simple like providing a
wagon for bike transportation like it is seen in most of the trains nowadays or something more
extravagant like serving a meal in an on-board restaurant. For bigger distances where journeys
start at night and finish the next day, night trains are provided that create an environment that
makes it possible to sleep for the duration of the journey. The advantage of integrating attributes
in the search is that the other search criteria travel time, number of transfers, and price can be
optimized at the same time. Manually searching those journeys always yields the risk of finding
journeys that are too expensive, take too long or require too many transfers. A customer would
shy away from these more easily in fear of making a bad deal. Finding guaranteed optimal jour-
neys makes him maybe reconsider. The positive effect is that on the one hand the customer pays
less and therefore probably uses the service more often and on the other hand the corporation
makes more money and gets a better reputation. A better integration of the services could also
make it more attractive for the corporation to expand it over more trains.

In this thesis we present an approach that extends the search in a time table information
system with certain train attributes. This arises two challenges. First we need to identify in
what way a customer wants to search for attributes and what attributes qualify for this. Upon
that, a satisfying model has to be created. Then we need to find a way to implement the model
in the existing time table information system without violating the property of finding optimal
results. To see how the approach would perform in practice, we need to examine if the result-
ing journeys deliver realistic alternatives for the customer. Additionally, the question, under
which circumstances the best results can be expected, must be answered. With circumstances
the distance between the source and target station and the start time of the query are meant.
Furthermore, the search has to be fast enough for a smooth user experience especially for big
graphs like the one from Deutsche Bahn AG it must scale.

At first in Chapter 2 we present the model, the approach builds up on. This includes the graph
model as well as the multi criteria search that is used to find optimal results. In addition, we
give a definition of optimality. The whole algorithmic approach is explained in Chapter 3. It
divides in two parts, the integration of indispensable and temporal bounded attributes. Both
parts can be implemented fully independently. In Section 3.3 an approach is presented to solve
problem that now skipping a train at the same station can yield better journeys. In Chapter 4 we
analyse how the approach performs in practice for the attributes bike transportation, on-board
restaurant, and night train. This includes a graph analysis, the creation of realistic customer
oriented queries and the effects on the search criteria travel time, number of transfers, and
price.

1.1 Related Work

There are not many approaches for specifically integrating a night train search in a time table
information system. Two approaches are presented in [GSMH11]. The first one uses the fact

5



that in general only few nigh train connections are available. Thus, it is possible to efficiently
iterate over all qualifying. To find a good journey, so called feeder connections are looked for.
These are two connections, one that brings the customer from the source station to the station
where the night train departures and one that brings him from the night train to the target
station. The second approach is similar to the one from this thesis. The sleeping time itself is
added as a new criterion to the multi-criteria search. Without optimization, this approach leads
to unacceptable high calculation time. Their approach differs in the way how journeys that
will not yield optimal solution are pruned. They make use of different heuristics that result in
finding in some cases non optimal solutions.
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2 Existing Model

The approach in this thesis builds up on the time table information system from [Dis07] and the
changes made to it from [Gü15]. We will first give a brief summary of the graph model where
we describe the aspects on which our approach builds up on.

2.1 Graph Model

The graph contains stations that are connected by routes. Every station has a station node.
A route is a sequence of route nodes that are connected by route edges. Every route node is
assigned to a station node. A route is characterized by the fact that all trains of a route hold
at the same stations in the same order. At every station multiple trains of different routes can
pass and overtake each other while trains of one route always drive in the same order while not
overtaking them self. A route edge between two route nodes A and B stores the information
when each train of the route departures at A and arrives at B. For every pair of departure and
arrival time a LightConnection object is denoted. It also stores a pointer that points to an
object, called FullConnection, that saves more related information like the price or the train
class.

2.2 Multi Criteria Search

The goal of the timetable information system is to find journeys from a source station to a tar-
get station where each journey is optimal. To allow each journey to be optimal, no resulting
journeys may be better in all search criteria than any other resulting journey. The search criteria
travel time, number of transfers, and price need to be minimized.

Such a multi criteria search can lead to situations where although only, lets say, the two criteria
travel time and cost are used but the result still consists of multiple journeys. An example for
this is given in table 2.1. Every journey, if optimal, can not be dominated by any other. While
the first one is faster than every other it also costs the most. The second one is slower but costs
less. The same goes for the third and fourth. This could be continued even further. This example
demonstrates that a simple algorithm for finding shortest paths, like the one from Dijkstra, won’t
be enough to find a satisfying solution.

duration cost
10 100
20 90
30 80
40 70

Table 2.1: A simple example that considers only the two search criteria duration and cost.
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2.3 Label Domination

Because it is required to optimize multiple criteria, all values that need to be optimized are
saved. Since situation like the one from table 2.1 can occur, it can be necessary to save multiple
paths for each node that are all optimal. This is done by using Label objects. A label saves a
value for each criterion and a pointer to the label at the previous route node.

The following rule is used to decide if one label dominates another:

For the set of search criteria SCold = {t rav elT ime, t rans f ers, price} a label A dominates a
label B iff

∀x ∈ SCold : A.x ≤ B.x∧
∃x ∈ SCold : A.x < B.x (2.1)

In other words if B would be removed there is still a label that is equally good in all criteria
and at least in one better. This gives a guarantee that no optimal label is removed and thus no
optimal journey is removed from the result set.

travel time in minutes transfers cost
197 1 8526
222 2 8442
223 2 8227
248 3 8143
278 3 8101
338 3 8071
398 3 7384

Table 2.2: The tabular shows travel time, number of transfers, and cost for each resulting journey when
looking for a connection from Gera Hbf to Grabow(Meckl).

2.4 Pareto Dijkstra

An extended version of Dijkstra, called Pareto Dijkstra, that is capable to find an optimal solu-
tion to the algorithmic problem from above is introduced. We will not go too much into detail
here because the extensions from this elaboration are not affecting the generic structure of the
algorithm.

Dijkstra finds a path that minimizes one given criterion. Let us say that the costs are needed to
be minimized. The original form of the Dijkstra algorithm goes through every node of a graph
and saves the guaranteed minimum cost value for each node until the target node is found. That
is the minimum cost of a journey from the source to the target node. To obtain the sequence
of stations that lead to the node, a pointer that points to the previous node is also saved. To
optimize for multiple criteria, multiple labels instead of only one value can be stored at every
route node. Furthermore, only labels at a node may be stored that do not dominate each other.
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In Algorithm 1 the generic version of the algorithm is given. It is a slightly simplified version
of the one presented in [Gü15].

2.4.1 Initialization

The input consists of a set of rout nodes V and route edges E. Furthermore, a set of start labels
and the source and target node are given. As usual, a priority queue is used for an efficient
access to the next optimal label.

As long as there are elements in the queue, the next ’best’ label gets extracted, written in l,
and removed from the queue. To make the labels comparable for the priority queue, one label
is better if it has a smaller travel time to the target. If the travel times are even, the number of
transfers are used. If even them are even, in a last instance the prices are getting compared.

2.4.2 Iteration Step

First in the loop from 5 to 16 a new label lnew is created. If the target station reached, lnew is
inserted in the set of target labels if it is not dominated by any label there. If the target station
is not reached yet, two different checks are made to check if lnew is even good enough. First it
gets compared to the labels at the target station with the help of a lower bound graph. Then,
lnew gets compared to other labels at the same node. If it is not dominated by any label, it will
finally be inserted in the queue.

Create new Label
At first, in the call in line 6 a filter is appended that checks if the new label fulfils different

criteria. In Section 3.1 filters play an important role. It is also checked if the target node is
reached, in which case also no label is created. If the criteria are fulfilled, a label lnew will be
created that includes the next station at which the edges points.

Lower Bound
In line 11 it is checked if lnew is dominated by a label at the target station. Algorithm 3 displays

the function in pseudo code. The check is done by simply iterating over all result labels and
examining if they dominate lnew. Function dominatesLowerBound checks if lnew is even capable
of minimizing the target travel time, transfer count, or price. This is done by using a lower bound
graph. The lower bound graph saves for each criterion the minimum value that is required to
travel from each node in the graph to the target node. Because dominatesLowerBound is
rather simple to implement, we do not provide pseudo code. Now it is possible to predict for
every label what the smallest possible values for each search criterion would be to reach the
target.

Label Domination
In a second step in line 12 it is checked if there are labels at the next node that dominate lnew.

If that is the case, no label needs to be inserted and the algorithm goes on with extracting the
next label from the queue. Further, is is checked if lnew dominates an existing label lex ist . In that
case lex ist is removed from the queue and from the set of labels. Because the set of labels at a
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route node contains always labels that do not dominate each other and lnew dominates one of
these, lnew itself can not be dominated by any other existing label at the node. What can be the
case is that lnew dominates one of the remaining labels at the node. If that is the case, those are
removed as well. After iterating over all labels, lnew is inserted in the set of labels at the node iff
it was not dominated by any other label. When comparing the prices, some changes have to be
made to still find optimal journeys. We will not examine this further here because it does not
affect our approach.

2.4.3 Filter Results

At the end, in line 18 f il terResul t is called. The pseudo code for this function can be found in
Algorithm 4. It is checked if there is any resulting label that dominates another resulting label.
As we can see, we use here the method dominatesHard for the domination check. We again
do provide, because of simplicity, no pseudo code for this function. dominatesHard does not
need further adaptations for the price domination treatment like it was the case for dominates.
Up to this point, both methods differ only in the price calculation and in the way which labels
are compare with them. For our approach, we need to adapt both methods in different ways
(see Section 3.2).

1 Function void paretoDijkstra(V , E, star t Labels, source, tar get)
// priorityQueue

2 q← star t Labels;
3 while not p.empt y() do
4 l ← p.pop();
5 for e ∈ {(l.node, x) ∈ E|x ∈ V} do
6 lnew← l.createNewLabel(x);
7 if x = tar get then
8 addResul t(lnew);
9 continue;

10 end
11 if not dominatedB yResul t(lnew) and
12 not dominatedB yOther Labels(lnew, x) then
13 q.inser t(lnew);
14 labels.inser t(lnew);
15 end
16 end
17 end
18 f il terResul ts();
19 return labels(tar get);

Algorithm 1: function paretoDijkstra: finds best path from source to target with a multi criteria
search.
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1 Function bool dominatedByOtherLabels(lnew, nodedest)
2 for lex ists ∈ labels(nodedest) do
3 if lex ists.dominates(lnew) then
4 return t rue;
5 end
6 if lnew.domnates(lex ists) then
7 q.remov e(lex ists);
8 labels.remov e(lex ists);
9 end

10 end
11 return f alse;

Algorithm 2: Algorithm dominatedByOtherLabels: checks whether a given label is dominated
by any label at the given node.

1 Function bool dominatedByResult(lnew)
2 for lresul t ∈ resul ts do
3 if lresul t .dominatesLowerBound(lnew) then
4 return t rue;
5 end
6 end
7 return f alse;
Algorithm 3: Algorithm dominatedByResult: checks with a lower bound comparison if the
given label is dominated by a label at the target node.

1 Function bool filterResults()
2 for lresul t ∈ resul ts do
3 for lother ∈ resul ts do
4 if lresul ts = lother then
5 continue;
6 end
7 if lresul t .dominatesHard(lother) then
8 resul ts.remov e(lother);
9 end

10 end
11 end

Algorithm 4: Algorithm filterResults: removes all labels that are dominated by other labels at
the target node.

2.4 Pareto Dijkstra 11





3 Search Attributes

In the following chapter we concentrate on how to extend the existing multi criteria search
with the search criterion attribute. Every LightConnection can have multiple attributes. It is
important to differ between attributes as they are saved in the current model and those who are
only designated for the search, the search attributes. We assume that the most important search
attributes are the following: bike and disabled person transportation, on-board restaurant, and
night train. In the current model are many different attribute types where each has its own ID.
Table 3.1 shows an assignment of the attribute IDs to the search attributes.

Search Attributes in the Graph Model
As mentioned in Section 2.1, a LightConnection stores a departure and arrival time and a

pointer to a FullConnection object. This objects has an object, called Attributes, that stores the
information which of the attributes, that can be searched for, is available. For every attribute
only a check if it is available or not must be possible so it is enough to assign for each attribute
a bit that is either set or not. Because there are only six attributes that can be looked for, only
six bits are required. It is easier to save and access whole bytes thus the remaining two bits are
set to 0 so in total 8 bits are required.

Availability Check
This kind of storage method is not only memory efficient but also allows to check with only

two logical operations if the wanted attributes are available in the LightConnection or not. This
works by defining first a byte sa ∈ B8 with B ∈ {0,1} that has set a 1 for every attribute that is
searched for. To check if a LightConnection has the wanted attributes, the assigned attributes
byte x ∈ B8 is used. It has the wanted attributes iff

sa ∧b x = sa

where ∧b is the column wise logical AND operator.

Example
Let us assume that the bit for bike transportation is the first one in the vector. The second

one is restaurant and the third one night train. Further assume a given LightConnection has the

Search Attribute Attribute id
bike transportation FB, FR, FK, FT, G , FU, h;, KF, KH
disabled person transportation EH, HS, 97, OA, OB, OC
restaurant BR, BT, BM, ZR
snack BO, MB, SN
air conditioner KL
night train NZ, CN, LW, SW, LI

Table 3.1: Assignment of attribute IDs from the current model to look for attributes.
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attributes bike and night train. The attributes vector is than defined as x . If we look for bike
transportation we have to set the search attribute vector as sabike and if we want to look for a
restaurant it should be look like sarestaurant .

x =
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Because the bike transportation is available but not the restaurant, the result should be true
for sabike while it should be false for sarestaurant . And indeed it is for bike transportation
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but for restaurant it is
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Classification of Search Attributes
There are two kinds of search attributes. Those who have to be available in each train of

a journey, called Indispensable attributes (see Section 3.1) and those who just have to meet
temporal constraints, called temporal bounded attributes (see Section 3.2). Both types differ in
the requirements they set for the found journeys. A classification with some chosen attributes
can be found in table 3.2. The next chapters explain the characteristics and give examples for
each class.
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Type Search Attribute
Indispensable attribute bike transportation, disabled person trans-

portation
Temporal bounded attribute restaurant, snack, air conditioner, night train

Table 3.2: Classification of search attributes

3.1 Indispensable Attributes

Indispensable attributes are all those who have to be strictly available in every train in the jour-
ney. The typical example for an indispensable attribute is the bike transportation. A customer
that travels with a bike will not be able to take a train that does not allow bike transportation.
So it would not make sense to show journeys where in some trains bike transportation is not
possible. Another example is the transportation of disabled persons. Extensive studies on how
indispensable attribute affect the connection search can be found in Section 4.1.

3.1.1 Implementation

In comparison to temporal bounded attributes, indispensable attributes are rather simple to
implement. All labels that do not fulfil the domination criterion are filtered out. This is the case
when the availability check returns false. Labels are filtered out immediately after creation,
before they are compared for domination with other labels (see Section 2.4). The domination
methods are therefore unaffected by this attribute.

3.1.2 Validation

This method is simply removing edges for the Pareto Dijkstra search, thus only effecting the
graph by reducing it. Assuming that the search finds optimal journeys, this property must
therefore also be true on the reduced graph.
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3.2 Temporal Bounded attributes

In this chapter we first give a brief explanation what temporal bounded attributes are and how
they differ to indispensable attributes. Then in Section 3.2.1 we explain step by step each prop-
erty of temporal bounded attributes and how to implement them.

Temporal bounded attributes differ fundamentally from indispensable attributes. As the name
says, the search needs to be specified with temporal bound. That means a start and an end time
for when the attribute should be available should be available. While indispensable attributes
require, that the attribute is available at any time, a temporal bounded attribute has to be avail-
able only within the given start and end time and even then it is not strictly required.

Non-indispensable
A customer can give a requirement on what attribute he wishes to be available in the train.

Respectively he will get results, if available, that fulfil the requirement, but also the results that
would be returned for a search without attributes are shown. We define therefore the theorem

Theorem 1. The set of journeys, resulting from a search with a query, is always a subset of the
set of journeys resulting from a search with the same query that additionally includes a Temporal
Bounded Attribute requirement.

The customer can therefore give his personal preferences about what attribute he wishes to
be available without having to fear that journeys, that would have been shown before, are not
there anymore. It is also possible to further specify time dependent criteria like when and how
long the attribute should be available in the train.

In theory every kind of attribute could be a temporal bounded or an indispensable attribute
because every attribute in the graph is represented by a boolean that is either set or not. In
practice the set of indispensable attributes and temporal bounded ones is disjoint. That is be-
cause attributes like bike and disabled person transportation do only make sense if they are
always available. Then there are attributes like restaurant, night train, or air conditioning that
are dispensable. A customer would never want that a journey is not shown because no air con-
ditioning is available. But what is shown, are journeys that provide this attribute for a longer
duration, even when they are worse in all other search criteria. In Section 3.2.1 all those possible
adjustments for temporal bounded attributes are presented.

3.2.1 Extended Search Criteria for Attributes

Each of the following search criteria gives the customer more possibilities to specify what jour-
neys with certain attributes he will get. Of all the different possible indispensable attributes,
we will focus on restaurant and night train. We can assume that these are the typical temporal
bounded attributes a customer would look for. In the next sections we will refer to them in
examples. In Section 4.2 we then analyse how they behave in a practical use on a real timetable
from Deutsche Bahn AG.
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Extended data structure
The query gets extended by the attribute search criteria star tT ime and endT ime, duration,

minDuration and toleranceFactor. Furthermore, each label obtains the two variables at-
tribute duration ad and attribute max duration amd.

The changes that need to be made take all effect in the following four methods:

- createLabel(lable)

- dominates(lable)

- dominatesLowerBound(lable)

- dominatesHard(lable)

In Section 2.4 is explained where in the generic algorithmic approach those methods are called.
The following sections explain in detail the reason for implementing them, how they influence
the search and how they can be implemented in an efficient way.

Start and End Time

Figure 3.1: Example of a journey that goes from station A to E. The bold arrows from B to D indicate
that here a train with a requested attribute is driving.

Every temporal bounded attribute needs to be specified with a start and an end time. The
result contains journeys that maximize the time an attribute occurs in a train within the given
time span.

Intersecting time bounds
If the train intersects the start or end time, only the time within the bounds counts. That

means for the start time s if a train with the wanted attribute is departing at time s − x and
arriving at a time s + y , only the time the attribute is available within the temporal bounds is
counted, that is y . Respectively for the end time e, if a train with the wanted attribute is depart-
ing at time e− x and arriving at e+ y , only x will be considered.

3.2 Temporal Bounded attributes 17



In summary the attribute duration d for a train that departures at dT ime and arrives at
aT ime for an attribute with the specified interval bounds star tT ime and endT ime is specified
as follows:

d = max{0, min{aT ime, endT ime} −max{dT ime, star tT ime}} (3.1)

Example
Lets look at an example to get a sense on how this works. Figure 3.1 shows a representation

of a journey. The circles are the station nodes and the arrows show the path the journey follows.
The query has a source station A and a target station E. The chosen attribute start time is 15 and
the end time 35. The journey starts at the route node A at time 0. It goes from A to B within
10 minutes. At B a transfer occurs and the new train that drives from B to C has the wanted
attribute (signalized by the bold arrow). The train continues to drive to D where a transfer
occurs to a train that drives from D to E but has not the wanted attribute (the arrow is not bold
anymore). For simplicity it is assumed that there is no waiting time when changing the train
and every next train departures within the same minute.
In the first 5 minutes, when driving from B to C with the wanted attribute, the start time is
not reached yet. Thus, these 5 minutes will not count for the search but only the remaining 5
minutes. Because at C no transfer occurs, the next 10 minutes do also count for the attribute
duration. At D a transfer occurs to a train that has not the wanted attribute, so this journey
can not count anymore to the attribute duration. All in all the journey has a train that has the
wanted attribute within the given interval for 15 minutes.

Implementation
The implementation requires changes in the methods createNewLabel and dominates. In

createLable ad and amd have to be updated. The variable ad saves the duration of the re-
quired attribute that the current train provides up to this point. Variable amd saves the biggest
duration of any train on the journey up to this point that has the required attribute. First the
attribute duration gain d from this edge is calculated with Equation 3.1. Then ad and amd are
updated according to the following equation:

adnew =

¨

d if transfer occures

adold + d else
(3.2)

amdnew = max{amdold , adnew}

Dominates without lower bound
Now, to find journeys that optimize the two values ad and amd, both simply have to be added

as a domination criterion. Compared to the other domination criteria travel time, number of
transfers, and price (see Section 2.2) ad and amd have to be maximized. Therefore, Equation
2.1 gets replaced by Equation 3.3

For the set of search criteria SCat t ribute = {ad, amd} it is

∀x ∈ SCold : A.x ≤ B.x∧
∀x ∈ SCat t ribute : A.x ≥ B.x∧
(∃x ∈ SCold : A.x < B.x∨
∃x ∈ SCat t ribute : A.x > B.x) (3.3)
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In Figure 3.2 is an example that shows why not only amd but also ad should be added as
domination criteria. For simplicity only t rav elT ime is additionally chosen as a domination
criterion. A journey from S to T is looked for. There are the two possible paths:

1. S→ C→ B→ T

2. S→ A→ B→ T

The bold arrows again signalize a train with the wanted attribute. The path A→ B→ T is taken
by a single train, so no transfer is required.
The first journey shows a fast train that reaches station 2 in 15 minutes. Therefore, at C it has
t rav elT ime, ad, and amd of 15. The train stops here so a transfer to a train departing at the
same station at route node B is required. The transfer sets the ad back to 0. The journey goes
along and ends after another 10 minutes at the target node. Because ad was set to 0, amd has
not been increased anymore and stays therefore at 15.
The second journey takes 20 minutes to reach route node B. At this point, the label from the first
journey is in every point, except ad, dominant (label b1 dominates label a1). Not considering
ad would result in the removal of the label. The same train drives along to T. At the target,
the label from the second journey (label a2) can now not even according to the old rule from
Equation 2.1 be dominated by the label from the first journey (label b2).
The second journey had at route node B the advantage that no train transfer was required.
Staying in a train can increase amd in the future because ad has not to be set to 0. That is why
for a domination check between two labels at a route node, the ad has to be considered as well,
while this is not necessary for labels that are at the target node.

DominatesHard
We recall from Section 2.4.3 that dominatesHard is only called for labels that already

reached the target node. As we have seen, here only the maximum attribute duration, that
is provided by the journey, counts. Thus, only amd needs to be considered and not ad. A label
A then dominates a label B iff

∀x ∈ SCold : A.x ≤ B.x∧
B.amd ≥ A.amd∧

(∃x ∈ SCold : A.x < B.x∨
B.amd > A.amd) (3.4)

Dominates with lower bound
It is possible to calculate the maximum attribute duration value that a label can possibly reach

until it reaches the target node. This information can be used to exclude labels from the search
earlier. Similar to the lower bounds for travel time, number of transfers, and price we define an
upper bound L.ub for a Label L. It is

L.ub = max{A.amd, A.ad + endT ime− now} (3.5)
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Figure 3.2: Example that shows two journeys from station S to station T. The bold arrows indicate that
a train with the search attribute is driving. For Node B and T are the two labels given that
are created while searching.

Because the attribute duration needs to be maximized, an upper bound can be used in the
same way as a lower bound for a minimization problem. Label B then dominates A iff

∀x ∈ SCold : A.x ≤ B.x∧
B.amd ≥ A.ub∧

(∃x ∈ SCold : A.x < B.x∨
B.amd > A.ub) (3.6)

Duration

The attribute duration value gives the customer the possibility to decide how long he wishes to
have the attribute available in a train. This also means, when there are two journeys that both
exceed the attribute duration value but one has a higher value, the one with the lower can still
dominate the other. That is because there is no reason to accept a higher travel time, price, or
more transfers if the duration, the attribute was wished for, is already reached.
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Figure 3.3: Example that shows two paths from station A to station F. The bold arrows indicate that a
train with the wanted attribute is driving.

A good example where this is useful is when the customer wants to take a meal in the train.
He knows he will not require more than 30 minutes for this. A journey with 30 min restaurant is
enough then, respectively one with more restaurant time but in general worse values for other
search criteria would make no sense for the customer. Another example is when looking for
night trains. Every person has different preferences in how much sleep he requires. Thus, it is
conceivable that some customers only want to sleep for 6 hours while others prefer 8 or more.
Because the range can be set differently for every search, every customers preferences can be
reached.

CreateLabel
The duration value acts as an upper bound. A value that is bigger or equals the search duration

value is as good as any other value that is also bigger or equal. So setting the duration value
as an upper bound for ad seems to be a reasonable choice. We simply extend Equation 3.2 by
restricting the calculated adnew.

adnew =

¨

min{duration, adold + d} if transfer occures

min{duration, d} else
(3.7)

Dominates with lower bounds
Similar to Equation 3.7, the upper bound needs to be limited to duration.
Equation 3.5 has to be updated to

A.ub = min{duration, max{A.amd, A.ad + endT ime− now}}

Setting a relatively small duration value can have a major impact on the performance because
as soon as a label that has reached the upper bound is at the target node, it is able to dominate
other labels with worse values in the other criteria.
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Example
Lets have a look at an example to understand the impact of different duration values. Figure

3.3 shows a graph with route nodes. The arrows again represent trains that drive for a given
duration. Bold arrows represent trains that have the wanted attribute. Journeys from A to F are
looked for. A quick look shows that there are two paths from A to F. The upper one A→ B→ C
→ F has a total of 20 minutes attribute duration and the lower one A→ D→ E→ F a total of 10
minutes attribute duration. The lower path requires only 30 minutes travel time so it can never
be dominated by the upper that requires 40 minutes. On the other hand the upper one has 10
minutes more attribute duration. Setting the search duration to a value smaller or equals than
10 makes the upper path dispensable because both reach the same amd value while the upper
requires more travel time. It has then no more advantage compared to the lower one. For every
duration value bigger than 10 the upper path will be shown in the result because it now has a
higher amd than the lower path and can therefore not be dominated anymore.

MinimumDuration

The customer is now able to define his preferred duration for which he wants the attribute to be
available. In a next step it would not be a bad idea if he is also able to define the minimum time
for which the attribute should be available. Again we can find good examples for restaurant
and night train why this would be an useful option. If the meal takes at least half an hour, any
journey that has fewer restaurant duration and does get dominated by other journeys is not of
interest anymore. The same applies for the night train. It is only reasonable that the customer
wants to set a lower bound that filters out every journey that provides a night train for fewer
than for example four hours.

As mentioned, journeys that do not provide the minimum attribute duration but are not dom-
inated by other journeys, are still shown. That means that theorem 1 is still true.

The minimum duration value minDuration acts as a lower bound. While checking for
domination between two labels at a route node that is not the target node we can not apply
minDuration in any way because the attribute duration values for the future labels could still
change. However, because it effects the domination with target labels, it can be applied for the
upper bound prediction and the direct compare of two labels at the target node itself.

Domination with lower bound
We need to achieve that the duration values only take affect when their value is bigger

than minDuration. Because the calculated value from Equation 3.5 is an upper bound of
the minDuration for this label, the adaptation can be applied a same way. This can be simply
achieved by subtracting minDuration and taking the maximum of this value and zero. By this,
every value that is lower than minDuration is set to 0.
We first state, for any label L it is

L.amdnew = max{0, L.amdold −minDuration}

and

L.adub,new = max{0, L.adub −minDuration}
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Now, from Equation 3.6 the following equation can be deducted. Label B dominates A iff

∀x ∈ SCold : A.x ≤ B.x∧
B.amdnew ≥ A.adub,new∧
(∃x ∈ SCold : A.x < B.x∨
B.amdnew > A.adub,new) (3.8)

DominatesHard
The same can be applied when comparing labels at the target node. Equation 3.4 has to be

adapted to

∀x ∈ SCold : A.x ≤ B.x∧
B.amdnew ≥ A.amdnew∧
(∃x ∈ SCold : A.x < B.x∨
B.amdnew > A.amdnew). (3.9)

Example
Lets see how a different minDuration can affect the resulting journeys. We again assume

a graph like the one in Figure 3.3 is given and we look for journeys from node A to node F.
Setting minDuration to a value higher than 20 will make the upper path expendable because it
can only provide at most 20 minutes of attribute duration. Respectively for every minDuration
smaller or equal than 20, the upper path can not be dominated by the lower one.

Tolerance factor

The last search criterion for attributes, we introduce here, is the toleranceFactor. The
toleranceFactor says how much more travel time compared to additional attribute dura-
tion a customer would tolerate. This follows the idea that journeys, that are shown because
they have a higher attribute duration but require a much higher travel time, are not really of
interest for the customer. Nobody would accept a 60 minutes longer journey just to have 10
minutes more of, for example, on-board restaurant time. The same can be applied for a night
train. Just like the minimum duration, implementing the tolerance factor only requires changes
in dominatesHard and dominatesLowerBound.

DominatesHard
Equation 3.10 that emerges from Equation 3.9 contains the last changes for a domination

check between two labels at the target node.

Label B dominates A iff

∀x ∈ SCold : A.x ≤ B.x∧
A.t rav elT ime− B.t rav elT ime ≥ toleranceFactor · (A.amdnew − B.amdnew)∧

(∃x ∈ SCold : A.x < B.x∨
A.t rav elT ime− B.t rav elT ime > toleranceFactor · (A.amdnew − B.amdnew)) (3.10)
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A.t rav elT ime − B.t rav elT ime is the additional travel time of the corresponding journey of
label A compared to the one of label B. A.amdnew − B.amdnew on the other hand describes the
additional attribute duration that A can offer. Multiplying this value with toleranceFactor,
that is higher than one, increases the overall value on the right side of the term making it more
likely to fail and thus likelier to prevent a domination of A by B. We note that we do not need to
consider the case that A.t rav elT ime− B.t rav elT ime < 0 because then ∀x ∈ SCold : A.x ≤ B.x
would fail what makes the term false anyway.

Dominates lower bound
Equation 3.8 can be adapted to:

Label B dominates A iff

∀x ∈ SCold : A.x ≤ B.x∧
A.t rav elT imel b − B.t rav elT imel b ≥ toleranceFactor · (A.adub,new − B.amdnew)∧

(∃x ∈ SCold : A.xB.x∨
A.t rav elT imel b − B.t rav elT imel b > toleranceFactor · (A.adub,new − B.amdnew)). (3.11)

Because we are doing a lower bound comparison, we have to use the lower bound travel times
from each label. It gives the shortest possible travel time from the current node at which the
label is to the target node. Therefore A.t rav elT imel b − B.t rav elT imel b is a lower bound for
the additional travel time of A compared to B. Then again A.adub,new − B.amdnew defines the
upper bound for the additional attribute time. The term makes sure that only in the case that a
lower bound has a bigger value than an upper bound, a domination can occur.

This change can have a major impact on the performance with queries with source and target
station that are far apart. It allows to exclude journeys that are dominant but have a too high
travel time. Usually this affects attributes that can not be excluded that easy with a preferred
or a minimum duration because those values are chosen too high. For example the night train
falls under this category where minDuration and duration usually are bigger than 4 hours. In
Section 4.3.2 is described how this affects the search in practice.

Example
Again the result of a query on the graph from Figure 3.3 may vary depending on the chosen

toleranceFactor. Lets consider that minDuration is 0 and duration a value over 20 so that
they do not affect the attribute duration. The upper path is valid as long as toleranceFactor is
equally or higher than 1 and becomes expendable for any value lower than 1. This is due to the
fact that the upper path requires a 10 minute longer travel time but also provides 10 minutes
more of attribute duration. The different search criteria for attributes are also dependent of
each other. If duration would be chose to a value lower than 20, toleranceFactor can be
chosen higher to still accept the upper path. Only a duration lower than 10 makes the upper
path expendable, independent of toleranceFactor (because the lower path already provides
10 attribute duration).
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3.2.2 Validation

We have seen that implementing temporal bounded attributes only requires to change the domi-
nation criteria from equations 3.3, 3.11, and 3.10. Furthermore, we have shown why the search
with the changes still finds under the given restrictions optimal journeys. Thus, assuming that
the algorithm without any changes finds optimal solutions, our approach does this as well.
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3.3 Optimizations for Time-dependent Graph Models

In the Pareto Dijkstra algorithm from Section 2.4, when popping the next element from the
queue, only one label for the next departing train is created. This indeed provides the optimal
results for travel time, number of transfers, and price because of the constraint that no trains
of one route may overtake each other. With attributes this situation changes a little bit. It is
possible that, although the next departing train does not have the wanted attribute, there may
be a train departing later that has it. Taking a train later makes mostly sense when the attribute
is indispensable, when the tolerance factor is high enough to allow a higher travel time for the
cost of more attribute duration or the waiting time for the next train is considerably low.

Implementation
Further departing trains are only of interest if the current train does not have the wanted

attribute and if the other trains may have the attribute. In a preprocessing part, a bitfield bav

is used to describe all attributes that occurred in any LightConnection at the edge. The current
state of still required attributes are saved in another bitfield breq.

In Algorithm 5 is the pseudo code of the algorithm. At first the next label is created and
inserted in the queue. This is done by createLabel. In line 3, breq is updated. ∧b and notb
are the bitwise operators for ∧ and not. All bits that are 1 at bav are set to 0 at breq. The
while loop from line 4 to 10 iterates over the next LightConnection objects as long as there
are LightConnection objects in the edge available with required but not yet found attributes. If
one is found, breq is again updated. The loop stops if no more attributes are required (breq 6=
(00000000)) or there is no more LightConnection object. The second case only occurs if there
was a LightConnection object with the wanted attribute before the search time, but non after.

1 Function void createNewLabel(label, ed ge, nex tConnect ion, breq)
2 label.createLabel(ed ge, nex tConnect ion);
3 breq = breq∧b notb bav ;

// find next train with at least one common attribute

4 while breq 6= (00000000)∧ next train available do
5 nex tConnect ion= getNex tDepar t ingTrain();
6 if not breq ∧b bav = (00000000) then
7 label.createLabel(ed ge, nex tConnect ion);
8 breq = breq∧b notb bav ;
9 end

10 end
Algorithm 5: Algorithm createNewLabel: Creates a label at the target station of a given edge.
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4 Computational Study

In this chapter we analyse the results of randomly generated queries with attributes. First we
examine for each attribute how the queries should be generated so that they are as realistic as
possible. This involves fundamental assumptions and graph analyses. Then we compare the
results from 10,000 queries with attribute condition to 10,000 without, with regard to, among
others, the distance of source and target station. In Section 4.3 a runtime analysis is done for
all queries with attributes. The queries are executed on a real 2 weeks long timetable from
Deutsche Bahn AG.

4.1 Bike Transportation

Here we analyse how the changes take affect on real queries with bike transportation for the
timetable search. In the provided timetable of all LightConnections only 5.03% have bike trans-
portation. But if we only take trains into account, more than 97.13% have it. To get realistic
examples we only created queries of stations that are reachable by trains of the classes from
table 4.2. Other transportation vehicles are for example buses and trams.

Train Classes total amount bike restaurant night train
ICE THA TGV RJ 128,044 30 74,095 0
EC IC EX D 127,744 76,784 42,509 285
CNL EN AZ 54,896 6,800 164 10,331
IRE REX RE IR X DPX E Sp 828,796 768,143 325 0
DPN R DPF RB Os 2,916,192 2,833,103 717 1100
All Classes 4,055,672 3,684,860 117,810 11,716

Table 4.1: Amount of LightConnection objects with the specific attribute for all together and each train
class separately.

Train Classes total bike restaurant night train
ICE THA TGV RJ 3.16% 0.02% 57.87% 0.00%
EC IC EX D 3.15% 60.11% 33.28% 0.22%
CNL EN AZ 1.35% 12.39% 0.30% 18.82%
IRE REX RE IR X DPX E Sp 20.44% 92.68% 0.04% 0.00%
DPN R DPF RB Os 71.90% 97.15% 0.02% 0.04%
All Classes 100% 90.86% 2.90% 0.29%

Table 4.2: Ratio of LightConnection objects with the specific attribute to all LightConnection objects for
each train class separately and all classes together. The ”total” column gives the ratio of
LightConnections objects of the class to the sum of LightConnection objects of all classes.

For the search with bike transportation, the graph is directly restricted by taking out all con-
nections that do not support it. If the optimal path from source to target does contain con-
nections that do not have the attribute, different paths must be found. Sometimes the results
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are a lot worse, for example when faster trains like ICEs can not be used. Table 4.4 shows the
result of a search with bike transportation. In comparison the result for the same query without
bike transportation is shown in table 4.3. Without bike transportation the fastest journey takes
only 380 minutes. But with bike transportation the travel time is increased to 1101 minutes.
The problem here is that due to the fact that the fast connection could not be taken, it was not
possible to find a journey within one day. Instead, it is necessary to take a CNL that travels
respectively slow for multiple hours. Table 4.2 shows the probability for each train class to have
the specific attribute (Table 4.1 gives the corresponding total amounts). As we can see, ICEs
nearly never allow bike transportation while REs and RBs allow it most of the times.

In some cases even more journeys are found because the optimal path that would dominate
others does not have the attribute. In table 4.5 is an example for such a case. Both journeys
with bike transportation would have been dominated by the one found that does not have bike
transportation in every connection.

Name aTime dTime TC Attributes
Hamburg-Altona(S) 13:31 13:31 S bike

Hamburg-Harburg(S) 13:55 13:55 S bike
Hamburg-Harburg 14:02 14:05 ICE

München Hbf 19:41 19:41 ICE
München Hbf (tief) 19:51

Table 4.3: A journey for a query with source station Hamburg-Altona(S) and target station München
Hbf(tief). Each row represents an arrival and a departure at the given times with a train of
the train class TC and the specified attribute.

Name aTime dTime TC Attributes
Hamburg-Altona(S) 13:54 13:54 S bike
Hamburg Hbf (S-Bahn) 14:08 14:08 S bike
Hamburg Hbf 14:16 16:41 IRE bike
Berlin Hbf (tief) 19:35 21:35 CNL bike
Berlin Wannsee 21:51 21:53 CNL bike
München Hbf 07:05 07:05 CNL bike
München Hbf (tief) 07:15 07:15

Table 4.4: A journey for a query with source station Hamburg-Altona(S) and target station München
Hbf(tief). Additionally, bike transportation was set as a requirement.

Journeys

To analyse this further, we created 10,000 queries starting from a random station and ending in
another random one. The number of queries is equally distributed over the distance between the
source and target stations for each query. In Figure 4.1, the number of queries for each number
of found journeys is shown. What first catches the eye is that if we look for bike transportation,
the likelihood that no connection at all is higher. In this example, over 35% of the queries will
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With bike Without bike
TT Transfers Price TT Transers Price
863 4 20904 803 4 20424
1040 5 20748

Table 4.5: Result of a query with start time 18.09.2015 19:43:00 from Dingden to Attnang-Puchheim.
In each row are for all found journeys travel time, transfers, and price listed, on the left for
journeys with bike transportation and on the right for the one without.

Figure 4.1: Shows the distribution of the number of journeys for queries with and without bike trans-
portation.
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Figure 4.2: Shows successful queries regarding the distance with and without bike transportation.

not find any journey between the two stations. If bike transportation is not chosen, under 30%
of the queries fail. In general, we can say that the number of found journeys is lower for queries
with bike transportation.

Distance

In this chapter we consider if and how the distance between the source and target station plays
a role for the success rate of queries. Figure 4.2 shows the rate of successful queries for queries
whose distance of source and target stations are within the given ranges (the first one is 0 to 50
km, the second 50 to 100 and so on). As it would be expected, the probability decreases with
the distance. While it is around 80% for distances up to 200 km it sinks to 43.23% for searches
without and 29.89% for searches with bike transportation. Furthermore, the success rate of a
search with bike transportation seems to be always a bit lower than the one without.

Search criteria
The following statistics give information on how the search for bike transportation influences

the three search criteria travel time, number of transfers, and price. To make the data compa-
rable, only successful queries for a search with bike transportation are used. Those searches are
obviously also successful for a search without bike transportation. From all found journeys for
a query only the best search criterion was chosen. The goal is to optimize at least one crite-
rion and it is not guaranteed that there is a journey that has optimal values for all mentioned
search criteria. This approach is chosen because of the problem that journeys from different
queries would not be comparable due to the fact that they are optimized for different criteria.
Restricting ourself to one criterion makes the journeys a lot easier to compare.
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Travel time
If the customer wants to travel by bike, he will in average be travelling for 570.33 minutes.

If he chooses to travel without bike it takes him 478.39 minutes what is an increase of 19.22%.
Figure 4.3 shows the average travel time in minutes of journeys grouped by the distance be-
tween source and target station. It is no surprise that the travel time grows for both searches
proportionally with the distance. In every case the journeys with only bike transportation take
longer. This is because if there is no attribute constraint, the search is not restricted to connec-
tions with bike transportation and can therefore find better paths sometimes. For small distances
up to 100 km the difference is not too high while it goes up to 100 to 150 minutes for distances
above 300 km.

Transfers
In average it takes 3.09 transfers to travel from source to target station if a bike is carried

along. Without a bike it only takes 2.85 transfers. That is an increase of 8.42%. Something
similar can be found for the average number of transfers in Figure 4.4. For small ranges bike
transportation requires only a few more transfers while the number grows faster for bigger
ranges.

Price
Travelling with a bike costs in average 7.68% more with 12,195.6 compared to travelling

without bike that costs 11,325.3. Figure 4.5 shows the average price that needs to be paid for
the journey. The graph for the price is very similar to the one for the travel time what is due to
the fact that the price is, among others, calculated from the distance. Though it does not grow
as fast, because usually the faster trains do not provide bike transportation while the slower
cheaper ones do. The statistic only take the best times into account so most likely the expensive
fast ones do not appear in the price statistics.
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Figure 4.3: Shows from the responses from 10,000 queries with and without bike transportation the
average travel time. For each set of journeys per query only the smallest travel time is used.

Figure 4.4: Shows from the responses from 10,000 queries with and without bike transportation the
average number of transfers. For each set of journeys per query only the smallest travel time
is used.
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Figure 4.5: Shows from the responses from 10,000 queries with and without bike transportation the
average travel time. For each set of journeys per query only the smallest price is used.

4.2 Temporal Bounded Attributes

In this chapter we analyse certain aspects about the attributes restaurant and night train. We
first have a look at how to choose the extended search criteria for attributes to generate realistic
queries with a high success rate. After that we analyse the results of queries generated with
those parameters.

4.2.1 Graph Analysis

When generating queries we need to ask ourself when the customer would probably search for
an attribute. In a first step, we can assume that no one would search for a restaurant at night or
a night train at day.

Restaurant
In Figure 4.6 we can see the distribution of LightConnection objects with the attribute restau-

rant in the graph for every hour of the day. Again only connections of a type from table 3.2 are
considered. While at the day approximately 3.5 % of all trains have the attribute, the number
decreases rapidly when reaching 23 o’clock and starts first rising again at 5 o’clock. Already
at 7 o’clock 2.5% is reached where it takes 4 hours until 11 o’clock to reach the 3.5% limit in
which it sticks during the whole day. The time from 7 to 10 is probably planed for breakfast.
The demand is here not as high than lunch and dinner from 11 to 22.
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Still, a search for a train with restaurant from 7 to 10 seems reasonable whereas the chances
from 11 to 23 are the highest. From 2 to 4 the probability is less than 0.2% what makes it highly
unlikely to find a journey with restaurant at night.

Figure 4.6: The restaurant occurrences distributed over the day

Night train
Figure 4.7 shows the same as Figure 4.6 but for night trains. Here, we have opposite occur-

rences than for restaurant. During the day nearly no night train is available. Starting at 21
o’clock the distribution of night trains begins to raise slowly. From 1 until 5 it rapidly increases
up to 14% and falls within one hour to 2% again.

The high distribution can be explained with the fact that in general at night fewer trains
drive. From all those trains that are left of course more trains are night trains. Because of that
we should find good results at times starting from 21 until 8 o’clock.

Remaining Attribute Search Criteria
Table 4.6 gives an overview how the remaining attribute search criteria can be chosen. To

include as many customer preferences as possible, we gave unspecific regulations by saying that
a random value between two boundaries should be chosen.
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Figure 4.7: The night train occurrences distributed over the day

Attribute StartTime EndTime Duration MinDuration ToleranceFactor
Restaurant 420 to 1080 tstar t + (d to d+60) 30 to 90 25 to 45 1
Night train 1260 to 1320 420 to 540 360 to 480 240 4

Table 4.6: The table shows rules on how the extended search criteria for queries with restaurant or night
train are chosen. If a range a to b is given then a random number between a and b will be
used. tstar t is the chosen start time for this queries and d the chosen duration.
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4.2.2 Search Results Analysis

In this chapter we analyse how the additional found journeys that fulfil the attribute requirement
perform in comparison to the ones without restrictions. Again, we consider searches with the
attributes restaurant and night train. We first look at the results for searches with and without
of each attribute and then have a closer look at the effects on travel time, number of transfers,
and price for each separately.

restaurant night train
MinDuration 74.44% 74.47%
Duration 62.37% 42.03%

Table 4.7: Shows the percentage of queries with restaurant or night train that have at least one result
with an attribute duration higher than MinDuration or even higher than Duration.

Table 4.7 shows the percentage of successful queries for which minDuration and duration
is reached. For 74.44% of all successful queries with the attribute restaurant, at least one jour-
ney is in the response that has a attribute duration bigger than the minimum duration, and for
62.37% the attribute duration is equal to the requested attribute duration. To analyse this fur-
ther, we first have to ask ourself from which factors the found attribute duration time depends.
As we have seen for bike transportation, the distance could play an important role. For short
distances the search is probably more likely to fail because if the minimum requested attribute
duration is higher than the travel time itself circuitous routes have to be taken. Those are ob-
viously not always available or they require a significantly higher travel time. In Figure 4.8 is
the probability for finding a journey that has at least the minimum attribute duration for each
distance shown. Here, we can see that indeed for bigger distances the probability raises up to
80 to 90%.

At first it seems that at least for the minimum duration for both attributes always nearly
equally good results are found. In the next paragraphs we give other factors beside the distance
that can influence the success rate for finding journeys with an minimal requested attribute
duration. We show that the reasons for the similar values can be completely different.

Minimum duration value
The obvious factor that influences the probability of finding journeys that have at least the

minimum attribute duration is the minDuration value itself. A higher value is harder to reach.
As we can see in table 4.6 restaurant has a minimum duration by at least a factor 5 lower than
night train.

Tolerance factor
The tolerance factor plays also an important role. All journeys that have a higher travel time,

compared to the additional attribute time, are removed from the resulting set. The higher the
value, the higher is the probability to find a journey with the minimum attribute duration. A
night train query has a 4 times higher tolerance factor.
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Attribute specific factors
Other factors that are hard to measure play also a role, for example the distribution of the

attributes on the different train classes from table 4.2. In general trains like ICEs and ICs that
provide a restaurant are faster than night trains. Therefore, the fastest journey to the target sta-
tion has even without an specific attribute search in many cases already restaurant time because
ICEs and ICs are used more often.

Without going into more detail we conclude that, although, the results for restaurant and
night train at first seem to be very similar, the factors on which both attributes are depending
influence them in a totally different way.

Figure 4.8: Shows the distribution of the number of queries which resulting journeys have at least the
requested minimum attribute duration with restaurant and with night train over the dis-
tance.

Search Criteria

Here we analyse how good the found journeys that fulfil the attribute constraint are in terms of
travel time, number of transfers, and price. For this purpose we created for every attribute for
each search criterion a graph that shows, depending on the distance, the average value of the
search criterion. The average is calculated with a moving average of order 100. Furthermore,
the moving average for the difference between both searches is shown. For each graph we used
20,000 separately created queries, 10,000 with and 10,000 without attribute constrain.

Restaurant
We first have a look at the responded journeys from queries with the attribute restaurant. The

figures 4.9, 4.10, and 4.11 show the moving average of travel time, number of transfers, and
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price for each distance. In table 4.8 are the average values and the increase rate. The search
criteria are the minimum values of each journey for each query. We only used queries in which
the attribute duration is above the minimum attribute duration. This filters the for this statistic
irrelevant values out.

As we can see in Figure 4.9, the travel time is unaffected by a restaurant search. Both graphs
are nearly identical. Just a slight tendency of the search with attribute being always a bit higher
than the one without can be seen.

For the number of transfers and price in Figure 4.10 and 4.11 both searches are again equal
with the exception that the difference is higher. While the difference of the number of transfers
is relatively constant for every distance, we can see for the price a slight linear regression over
distance. This can be explained by the fact that ICEs and ICs that provide restaurants have a
one time surcharge. For bigger distances that surcharge gets compensated by the higher prices.
It should be noted that other factors play a role as well, like the fact that train classes like RB
and RE are cheaper for short distances because of better local linkages. An ICE can be cheaper
than a RB when the RB needs to drive inconvenient paths that are in sum longer than the direct
one the ICE drives.

The nearly identical travel times make the search results very attractive because an on-board
restaurant brings not only comfort but also the opportunity to save the time of taking a meal.

Table 4.9 shows an example of the resulting journeys for a query with on-board restaurant.
The search with restaurant finds not only the results of the search without but also one ad-
ditional connection. This one is only 10 cents more expensive but completely provides the
requested 55 minutes restaurant time.

with restaurant without restaurant increase rate
avg. travel time 518.86 513.96 0.95%
avg. transfers 3.23 3.02 6.81%
avg. price 14312.00 13071.40 9.49%

Table 4.8: Average values for travel time in minutes, number of transfers, and price in cents of the results
of a search with 10,000 queries with and without restaurant
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With restaurant Without restaurant
TT Transfers Price Attribute

duration
TT Transfers Price Attribute

duration
936 4 21478 0(0%) 936 4 21478 0(0%)
936 4 21488 55(100%) 936 5 21395 0(0%)
936 5 21395 0(0%) 957 5 20038 0(0%)
957 5 20038 0(0%) 1003 5 19798 0(0%)
1003 5 19798 0(0%) - - - -

Table 4.9: Resulting journeys of two queries, one with restaurant one without, that looked for a con-
nection from Wutöschingen to Groß Ammensleben. Each journey has a travel time (TT),
transfers, price in cents, and an attribute duration. The attribute search properties are the
following: duration = 55 min, minDuration = 32 min, toleranceFactor = 1.

Figure 4.9: The travel time of journeys from 10,000 queries with and without restaurant over the dis-
tance
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Figure 4.10: The number of transfers of journeys from 10,000 queries with and without restaurant over
the distance

Figure 4.11: The price of journeys form 10,000 queries with and without restaurant over the distance
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Night train
Now we analyse the same for night trains. The figures 4.12, 4.13, and 4.14 show again the

travel time, number of transfers, and price of a search with and without night train for each
distance and table 4.12 respectively shows the average for all values.

When we compare the average increase of travel time, number of transfers, and price to the
one of the other attributes we see that the trade off for the customer may be worse for this at-
tribute. But we have to keep in mind that the service has to be available for a much longer time
and has probably more importance to the customer than for example an on-board restaurant.
Therefore a customer probably bears a not as good of a trade-off.

The first distinction is that the difference for the travel time is a lot bigger. The higher travel
time up until 400 km can be explained by the fact that not nearly enough night trains are avail-
able to find direct journeys that do not require circuitous routes. After that point we can see a
constant approach of both graphs what can be explained by the fact that probably only night
trains travel bigger distances at night.

The number of transfers from Figure 4.13 shows a similar behaviour.

The price in Figure 4.14 follows the same trend as travel time and number of transfers but in
a more radical fashion. The difference for short distances is a lot higher but therefore it adjusts
faster. The customer need to pay for the higher distance that is caused by the circuitous route
that needs to be taken.

In Table 4.10 we see an example where the last two journeys of the query with night train
search have a much higher travel time than the others. The last journey even reaches the pre-
ferred attribute duration. In Table 4.11 a better example is given. The customer has to travel
360 minutes longer, has an additional transfer, and must pay roughly 30 Euros more but there-
fore has 385 minutes night train time.

With night train Without night train
TT Transfers Price Attribute

duration
TT Transfers Price Attribute

duration
177 2 7601 0 177 2 7601 0
177 3 7010 0 177 3 7010 0
213 3 6021 0 213 3 6021 0
213 4 5949 0 213 4 5949 0
816 5 20528 404 - - - -
848 5 20784 429 - - - -

Table 4.10: Resulting journeys of two queries, one with night train one without, that looked for a con-
nection from Bad Sooden-Allendorf to Karlstadt(Main). Each journey has a travel time (TT),
transfers, price in cents, and an attribute duration. The attribute search properties are the
following: duration = 429 min, minDuration = 240 min, toleranceFactor = 4.
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With night train Without night train
TT Transfers Price Attribute

duration
TT Transfers Price Attribute

duration
1013 4 22104 0(0%) 1013 4 22104 0(0%)
1373 5 24984 385(91%) - - - -

Table 4.11: Resulting journeys of two queries, one with night train one without, that looked for a con-
nection from from Eichen(Kr Siegen) to Sluknov. Each journey has a travel time (TT),
transfers, price in cents, and an attribute duration. The attribute search properties are the
following: duration = 421 min, minDuration = 240 min, toleranceFactor = 4.

with nighttrain without nighttrain increase rate
avg. travelTime 809.72 692.63 16,90%
avg. transfers 3.60 3.30 8,97%
avg. price 18832.20 15250.30 23,49%

Table 4.12: Average values for travel time in minutes, number of transfers, and price in cents of the
results of a search with 10,000 queries with and without night train

Figure 4.12: The travel time of journeys from 10,000 queries with and without night train over the
distance
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Figure 4.13: The number of transfers of journeys from 10,000 queries with and without night train over
the distance

Figure 4.14: The price of journeys from 10,000 queries with and without night train over the distance
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4.3 Runtime analysis

For the following computations we use an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz (4
CPUs). To make use of all four cores, parallel computing with 4 threads is activated. We gen-
erated for each attribute 10,000 queries. To compare the runtime we additionally created the
same attributes but without any attribute constraints. The distance of source and target station
is up to 800 km equally distributed, otherwise the stations are randomly generated.

Table 4.15 shows the, per query, average resulting search times in ms for each search with and
without attributes. The table is split into 3 parts. The overall average search time is the total
average search time for a query. The search consists of a preprocessing part where the lower
bounds graphs are initialized and the actual multi criteria search. The relevant search time is
the average search time for each query but without the lower bound preprocessing. Factor sim-
ply shows for overall and relevant by which factor the search time of a search without attribute
constraint changes to the one with. The three Figures 4.16, 4.17, and 4.18 show the average
relevant search time over the distance for each search with and without attribute.

The reason for deferring between overall and relevant search time is because, as the name
indicates, the preprocessing is in no way affected by the modifications in this thesis and is
therefore not directly relevant. It is the most time consuming part so the overall search time
changes are not that big.

4.3.1 Bike Transportation

It is no surprise that a search for bike transportation reduces the search time. After all, the
search is now executed on a graph with only edges with at least one train that supports bike
transportation. Although, as we have seen in Section 4.1, most of trains support it, all the other
transportation classes often do not. Queries with source and target station, that are closer to
each other, require less search time. Here, the difference between queries with and without
attribute is also not that big. At higher distances the difference increases but we observe that
the search time does not increase anymore from distances of 500 to 600 km.

4.3.2 Indispensable Attributes

The indispensable attributes restaurant and night train do always add search time because the
search finds additionally to the journeys without attribute the one with. In average the relevant
search time is more than doubled.

The search times for queries with restaurant are for small distances equally high and then
diverge constantly. Here, the success rate from Figure 4.8 matters again. Because the toler-
ance factor and the duration between start and end time, in which the attribute should occur,
is smaller, labels are dominated earlier by which potential unnecessary journeys are excluded
earlier.
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For queries with night trains the search time behaves for small distances differently as the
difference to the queries without attribute is already high. Because of a higher tolerance factor
and wider ranges between start and end time more journeys are possible that use bigger cir-
cuitous routes. And because its less likely to find a really good journey with a high attribute
duration and small travel time, it is not that easy to dominate worse labels. For bigger distances
the difference is not that high as it is for searches with restaurant.

In general, strangely queries with restaurant require a lot more calculation time than those
with night trains. One explanation is that the queries with night trains, search for trains at night
when fewer trains drive. Although, at first the same amount of edges are inspected, the higher
waiting times increase the travel time more what results faster in a domination of the label.
Because the searches without attributes are differing in a same way, we assume that this is an
attribute independent effect.

Overall avg. search time Relevant avg. search time Factor
Attribute With

attribute
Without
attribute

With
attribute

Without
attribute

Overall Relevant

restaurant 1,852.75 1,614.84 381.89 190.90 -14.73% -100.05%
nighttrain 1,660.02 1,533.27 221.26 104.67 -8.27% -111.39%
bike 1,522.40 1,611.04 83.51 186.33 5.50% 55.18%

Figure 4.15: Average search time in ms of 10,000 queries for each attribute
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Figure 4.16: Search time for 10,000 queries with and without bike dependent of the distance

Figure 4.17: Search time for 10,000 queries with and without restaurant dependent of the distance

Figure 4.18: Search time for 10,000 queries with and without night train dependent of the distance
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5 Conclusion

In this thesis, we successfully integrated attributes as a new search criterion in queries for
timetable information. We could validate that the extended search finds indeed under the given
conditions still the optimal journeys. This applies for both attribute search models.

We assessed that a search with bike transportation fails in average 5% to 10% more often then
a search without. Furthermore, the number of transfers and the price are increasing by 7% to
8% and the travel time by 18% to 19%. Searches with restaurant had a slightly higher travel
time while the number of transfers and the price increase by 7% to 10%. The biggest trade-off
was the one for a night train search. Here, the increase for travel time, number of transfers,
and price is 16.9%, 8.97%, and 23.49% respectively. We can assume that in many situations the
compromise that has to be made by the customer is acceptable.

For bike transportation and on-board restaurant the trade-off for travel time, number of trans-
fers, and price is unaffected by the distance of source and target station. An improvement can
therefore not be gained by selecting stations that are farer or nearer to each other. For night
train we had a different situation. Here, queries with source and target station that are further
afar lead indeed to results that have in average not as high travel time and price.

The runtime analysis has shown that the relevant search time for temporal bounded attributes
is doubled. But still, the overall time was increased by 10 to 15% what sounds justifiable consid-
ering the time the customer saves because he does not have to look manually. We saw that over
the distance the additionally required search time reduces constantly to a point where no extra
search time is required. For indispensable attributes the relative search time is even halved.
Therefore, the scalability is given.

In total we can say that the approach in this thesis is an useful extension for a time table
system because it gives the customer the ability to easily specify his search and fit it better to his
needs while the search time is still within reasonable limits. As we have seen, the results deliver
often an attractive trade-off, what makes this approach also useful in practice.
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